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Abstract. This paper presents an action selection technique for reinforcement learning in station-
ary Markovian environments. This technique may be used in direct algorithms such as Q-learning,
or in indirect algorithms such as adaptive dynamic programming. It is based on two principles.
The first is to define a local measure of the uncertainty using the theory of bandit problems. We
show that such a measure suffers from several drawbacks. In particular, a direct application of
it leads to algorithms of low quality that can be easily misled by particular configurations of the
environment. The second basic principle was introduced to eliminate this drawback. It consists
of assimilating the local measures of uncertainty to rewards, and back-propagating them with the
dynamic programming or temporal difference mechanisms. This allows reproducing global-scale
reasoning about the uncertainty, using only local measures of it. Numerical simulations clearly
show the efficiency of these propositions.
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1. Introduction

Although it recently proved to be an alternative to classical dynamic program-
ming (DP) based techniques for high dimensional problems, reinforcement learning
(RL) is primarily concerned with the adaptive optimization of imperfectly modeled
dynamic decision problems (Sutton et al. 1991; Sutton 1992; Mahadevan and Kael-
bling 1996; Kaelbling 1996; Kaelbling et al. 1996). Classically, the definition of a

reinforcement algorithm supposes the choice of two basic components:

e a technique for calculating and storing the estimated value of each state-action
pair,

e a rule for selecting actions.

The problem of action selection is not trivial, since always choosing the estimated
best actions often leads the learner to converge on a sub-optimal policy (Kumar



1985). The environment must be explored by sometimes performing estimated
non-optimal actions. There is thus a constant dilemma between two contradictory
objectives:

e exploitation (of past experience), that is, maximization of expected reward,
knowing that this cannot be done with certainty because one only possess esti-
mates of some variables;

e cexploration of the environment in order to make estimates more accurate or
timely, by the choice of the least known actions.

This paper proposes a technique to deal with the exploration vs. exploitation
dilemma during the adaptive optimization of stationary Markov decision processes
(MDPs). This problem already has been addressed in many adaptive control (Mar-
tin 1967; Kumar and Becker 1982; Kumar and Lin 1982; Sato et al. 1985, 1988,
1990) and RL (Thrun 1992a; Kaelbling 1993 chap. 9; Fiechter 1994) studies. How-
ever, there seems to be a lack of efficient solutions for multi-state decision models as
MDPs (Kaelbling 1996), as opposed to bandit problems that represent the single-
state case.

Our technique may be implemented in direct (model-free) algorithms such as
Watkins’ Q-learning (1989), and in indirect (model-based) algorithms such as adap-
tive dynamic programming (Barto et al. 1991, 1995). Tt is based on two principles:

1. to define local measures of the uncertainty in the form of exploration bonuses,
using the theory of bandit problems;

2. to add these bonuses to reward and back-propagate them with the dynamic
programming (DP) or temporal difference (TD) mechanisms.

The use of local measures of uncertainty is convenient, but it is dangerous. Without
prudence, algorithms can be misled by some particular structures of the environ-
ment. This is what happens in most current applications (Thrun 1992a; Kaelbling
1993 chap. 9). The back-propagation of exploration bonuses is an effective way
to avoid this drawback. Tt has already been used by Sutton (1990) to deal with
non-stationarity in an indirect algorithm, and mentioned by Thrun (1992a, 1992b).
Here we adapt it to the stationary Markovian case, and to algorithms which are
exclusively direct, such as Q-learning.

The paper is organized as follows: section 2 sets up the framework of MDPs with
unknown transition probabilities. It describes briefly the most popular adaptive
algorithms for these problems, and the origins of the exploration versus exploitation
dilemma.

Section 3 presents the first main feature of our technique: the local measures of
uncertainty used for each state-action pair, based on the theory of bandit problems.
We first describe previous results on bandit problems, and then propose a unifying
notation for several Bayesian and non-Bayesian approaches. Then we consider using
these results to derive solutions for multi-state MDPs with unknown probabilities.
We stress several drawbacks inherent to this approach, and show that even if it



seems to be a reasonable solution, such an approach cannot be supported by exact
mathematical foundations. In the end of section 3, we describe a first series of
algorithms, and show what kind of environment may mislead them.

So far, we have done nothing more than generalize, extend and analyze a previ-
ous technique described by Kaelbling (1993). Section 4 presents the second main
features of our technique, and the main original contribution of this paper. Here,
we explain that adding the exploration bonuses defined previously to rewards, and
back-propagating them with a DP or TD mechanism, allows us to overcome the
drawbacks of the previous algorithms. Using this idea, we propose a second series
of algorithms that should not be misled by the environments in which the first fail.
In the end of the section, we try to generalize this technique to a wider class of
algorithms.

In section 5, we demonstrate the efficiency of our algorithms using extensive
numerical simulations.

2. The Exploration vs. Exploitation Dilemma: the Stationary Marko-
vian Case

A key assumption underlying much reinforcement learning research is that the
interaction between an agent and its environment may be modeled as a Markov
decision process (MDP) (Howard 1960; Putterman 1994).

2.1. Markov Decision Processes

A finite MDP S is defined as S = (X, A, P, R,v) where X = {z;} is the (finite)
state space, A = {ay} is the (finite) action (or decision) spacel, P = [pfj] is the
transition matrix:

oL Pr@t 1) =asle () =aa(t) =) (VE),

R = [rﬁ] is the reward matrix: r% is the (deterministic) reward received by the
system each time that in ; it chooses action aj and then goes to z;, and y € [0, 1)
is the discount factor: one unit of reward received at time ¢ 4+ 1 is worth v unit of
reward received at time £. S is stationary because the transition probabilities are
the same for all time ¢.

The strategy that maximizes the expected discounted reward

E (Z Ny r(t)) = lim E (Z N .r(t)) , (1)

is a mapping p* : X — A defined by solving Bellman’s fundamental equation

vi = max a + Z P v (Vi) (2)
J



or its equivalent form

=gt Yk maxt (Y (0.K), ®)
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is the expected immediate reward if the systems executes action ag in state x;; v; is
the expected discounted reward (1) if the system starts in z; and always follows an
optimal policy; and vf is the expected discounted reward (1) if the systems starts
in x;, executes action ay first, and then always follows an optimal policy. Then we
have

p* (z;) = arg max &+ prj ‘v; | = arg mkaxvf (Vi). (5)
J

Bellman’s system (3) may be solved by asynchronous DP that calculates succes-
sive approximations of v¥ by iterating

VE e qf + )bl max V], (6)
J

for different (7, k). Such an operation is called a ‘back-up’ of the state-action pair
(i,k). Provided that each (i, k) is backed up an infinite number of times, but
whatever the order in which they are selected, we have V¥ converges to vf for all

(i, k) (see, for example, Bertsekas 1982; Puterman 1994).

2.2. Adaptive Optimization

RL is well suited to situations where there is significant uncertainty about some
parameters of the model. In the case of MDPs, one possibility is that the transition
matrix P, and sometimes the reward matrix R, are initially unknown?.

The typical solution proposed by (non-Bayesian) adaptive optimal control is the
algorithm called adaptive DP (ADP). First, it tries each action once in each state,

so that the maximum likelihood estimate (MLE) of P, P= [ﬁfj], is defined by

iﬁfj = n_lkj (V (4,5, k) , (7)

k
ij

observed since time 0, and nf = Ej nfj is the number of executions of a; in z;

where n7. is the number of transitions from state z; to state z; due to action ay,



since time 0. Note that, at this point, the reward rfj is known with certainty for all
triple (i, 7, k) such that ﬁfj > 0. The MLE is then used to determine the certainty-

equivalent optimal policy, i.e. the policy that would be optimal if P were the real
value of the unknown parameter P. This is done by DP that executes back-ups
according to

VE e gf + ) B - max V), (8)
J

where
~L def ~
Qf = Zp?j'rfj (9)
J

is the estimated value of ¢¥, for all (i,k). Provided that each action is tried in
each state an infinite number of times, the MLE converges to the true value of
the unknown parameter, thus ensuring that the policy calculated by successive
applications of (8) converges to the optimal policy (cf., e.g., Barto et al. 1991,
1995).

ADP is called an indirect algorithm because it uses a “model” P of the problem,
and calculates the estimated optimal policy starting from this estimate in the same
way as in the non-adaptive case. On the contrary, RL also proposes direct algo-
rithms that estimate the value of the different state-action pairs without an explicit
model of the unknown parameters.

The typical direct algorithm for MDP with unknown transition probabilities and
rewards is Watkins’ Q-learning (QL) (1989). This algorithm uses a set of Q-values
{Qf} to approximate the solutions v of Bellman’s equation (3). Each time that
the execution of action ay in state x; leads to state z; (we say that the transition
(i, j, k) occurs or is observed), the value Q¥ is updated by the amount

AQf =« (nf) [rfj + - mlaxQé» — Qf] , (10)

where a (nf) € (0,1) is the learning rate. Watkins and Dayan (1992) and Tsitsiklis
(1994) proved that if each action is tried an infinite number of times in each state,
and if the learning rate « (n) satisfies

e}

Za (n) = +oco0  and Za (n)2 < +oo, (11)

n=0
then, with probability 1, Q¥ — vF as time tends to infinity for all (i, k).
2.3. Exploration vs. Exploration Dilemma

We see that the convergence to the optimal policy is ensured for both adaptive
algorithms (ADP and QL), but it requires that each action be tried infinitely often



in each state. In practice, this is impossible to achieve because we cannot wait an
infinite time before starting the optimization. Therefore, at each time ¢, we have
to decide between continuing to sample to ensure convergence (exploration), and
following the estimated optimal policy (exploitation).

There have been many propositions for dealing with this problem (Martin 1967,
Sato et al. 1985, 1988, 1990, Thrun 1992a; Kaelbling 1993, Fiechter 1994). An
intuitive way is to measure the uncertainty attached to each action, and to use
these measures and the actions’ estimated quality to take decisions.

3. Local Measures of Uncertainty Based on the Theory of Bandit Prob-
lems

As other researchers experimented previously (e.g. Kaelbling 1993), we use the
theory of bandit problems to define measures of the uncertainty attached to each
state-action pair. The origin of this approach is an attempt to distribute the adap-
tive optimization by considering an independent bandit problem for each state of
the original problem. In this work, we use results pertaining to normal bandit
problems.

3.1. Normal Bandit Problems
3.1.1. Definition

The exploration vs.exploitation dilemma is very often associated with the K-armed
bandit problem where it appears in its simplest form (Kaelbling et al. 1996). To
understand this problem (and the origins of its name), we must imagine several
slot-machines (or “one-armed-bandits”) side-by-side. A single play of a machine
costs the same price whatever the machine. Therefore, everything happens as if
there was a single machine with several levers (or “arms”), the player choosing one
of them after inserting a coin. We speak then of K-armed bandits.

Each arm delivers a random reward. Because there are initially K independent
machines, the rewards delivered by different arms are independent random variables
(this is a fundamental hypothesis). Some arms are better than others (i.e., give
higher expected rewards), but usually we do not know which is the best.

Except if the arm statistics are completely known (no exploration needed), or if
they are completely unknown (no exploitation possible), we face the exploration vs.
exploitation dilemma when we play a multi-armed bandit. Exploitation consists of
choosing the estimated best arm, and exploration is the choice of another arm, for
the sake of checking that estimations are correct, or for making them more accurate.

Each bandit problem is a special case characterized by what is known of the
probability distributions on the rewards delivered by each arm. If one knows these
laws sufficiently well—which supposes a sufficient knowledge of the uncertainty
attached to them—a direct calculation of the solution (according to some optimality



criterion) is possible. The Berry and Fristedt book (1985) provides an extensive
bibliography on the subject.

Hereafter, we will use results developed for bandit problems where each arm k
delivers the random reward pj that follows a normal (Laplace-Gauss) distribution
N (my, o) with mean my, and variance 0'2. We will consider two cases:

e my unknown and o} known, for all k,

e my and o} are unknown, for all k.

3.1.2. Interval estimation

A non-Bayesian solution to this problem was proposed by Kaelbling (1993). This
algorithm, called ‘Interval Estimation’ (TE), consists in always choosing the arm
that maximizes the upper-bound uby of a 100(1 — )% confidence interval of py,
for some confidence coefficient # € (0,1). 3 We recall that I} is a 100(1 — )%
confidence interval of py if and only if

Pr(my € I§) = 1 —0. (12)

It can be demonstrated quite easily that, if pg follows a normal distribution with
unknown mean my and known variance o7, then we have

z
ubk = pr + op GLZ (nk > 1) (13)
where
bl B (> (14)

is the sample mean of n, observations of p, and zg/, is the upper 100 (6/2) % point
of the unit normal distributions, i.e., the value z > 0 such that Pr (N (0,1) < z) =
1-0/2.

Another basic result of statistics is that if both the mean and variance of py are
unknown, then

tnk 1

ubk = pr + s /Lk (nk > 2) (15)

where

def Zpk—f)k N m«Epi—(Zpk)? p
T (T (nk > 2) (16)

is the sample standard deviation of ny observations of pg, and tz;‘z_l is Student’s

t-function at confidence level 8/2 and with (ny — 1) degrees of freedom.



In practice, IE first tries each arm once if the variances are known, and twice
otherwise. Then, it uses (13) or (15) to calculate the upper bound uby associated
with each arm. The solution is then to choose, at each time ¢, an arm that maximizes
ubg, while updating this value each time that a new observation is available. The
values of 2/, in (13) and of t;l;“;l in (15) are obtained by consulting tables available
in any general statistics book (e.g., Larsen and Marx 1986; Snedecor and Cochran

1989).

3.1.3. Gittins’ indices

The Bayesian solution to bandit problems is always associated with powerful math-
ematical tools known as Gittins’ indices (or dynamic allocation indices) (Gittins
1989). The use of Gittins’ indices spreads beyond the scope of bandit problems,
but bandit problems constitute their primary field of application.

Bayesian adaptive control aims at maximizing the expected discounted reward

E (th -p(t)) , (17)

where p(t) is the reward received at time ¢ (which only depends on the arm chosen
at this time), and g € [0, 1) is a discount factor*. The expectation in this equation
is calculated relative not only to the stochastic behavior of the model, but also to a
certain probability distribution on the unknown parameters (the initial belief). In
this framework, the Gittins’ index is a value v attached to each arm k, and such
that it is always optimal (with respect to (17)) to choose an arm that maximizes
VE.
According to Gittins (1989, section 7.2 and 7.3):

e if p; follows N (my, o) with mean my unknown and uniformly distributed over

the real line, and known variance o, then

_ de _
vk = i+ 0k - vy (0,1) vy (5 i) (ni > 1), (18)

where py is defined as in (14) and v, (0,n) > 0 is the index of a normal arm
with unknown and uniformly distributed mean, with variance known and equal
to 1, and after n observations with sample mean 0 (i.e. the value that the index
should have if gy = 0 and o, = 1);

e if both the mean and variance of py are unknown and uniformly distributed
over the real line, then

_ de _
v = pr ok v (0,1,m0) g (pisiome) (k2 2), (19)



where si is defined as in (16), and v, (0,1, n) > 0 is the index of a normal arm
with unknown and uniformly distributed mean and variance, after n observa-
tions with sample mean 0 and sample standard deviation 1 (i.e. the value that
the index should have if p = 0 and s; = 1).

The values of v, (0,n) in (18) and v, (0, 1, n) in (19) may be found in tables provided
by Gittins® (1989).

The algorithm derived from these results is very close to IE: first, try each al-
ternative one or two times, depending on whether the variances o are known or
not; then use (18) or (19) to determine the next action to perform, by referring to
tables when necessary, and by updating the statistics pg, sp and ng each time that
an outcome of arm k is observed.

3.1.4. Conclusion: exploration bonuses

We see that whatever the nature of the approach (Bayesian or not), the optimal
solution to normal bandit problems is always to choose, after some steps, the arm
that maximizes the estimated average reward pg plus the exploration bonus Jy

defined by

(20)

5. | oowe do (nk) in the case of known variance,
k sk - 0o (ng)  in the case of unknown variance,

where the unit ezploration bonus dg (n) is a positive decreasing function of n defined
by equations (13), (15), (18) or (19) as

zg/2/\/1 (interval estimation, known variance),
50 (n) def tg/_;/\/ﬁ (interval estimation, unknown variance), (21)
vg (0,n) (Gittins’ indices, known variance),

v (0,1,n) (Gittins’ indices, unknown variance).

Practically, this value is calculated easily starting from tables.

The exploration bonus d; represents the maximum amount (of reward or utility)
that one is willing to pay for one observation of the output of arm & (fig. 1). Tt
measures the importance of sampling this arm to obtain information rather than
simply obtaining the expected reward pi. In all cases we have lim, o Jo (1) = 0.
This reflects the fact that, when an arm has been tried an infinite number of times,
its characteristics are known with certainty and thus, there is no further information
to be learned from sampling it.

Because the bonuses are used in additive equations, their order of magnitude
is very important and scaling them may dramatically corrupt the behavior they
induce. At each time ¢, the optimal decision does not only depend on the order
of preference of the different arms according to the current knowledge, but it also
depends on the very value attached to each arm (cf. 4.2.2).

Figures 2 and 3 show plots of the non-Bayesian and Bayesian unit exploration
bonuses dg (n), for small values of n. Tt is striking to observe :
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A
\/ \/
p1,01 =0 p2 < p1,62 >0

Figure 1. If the system ¥ chooses arm 2, its estimated loss is p; — p2 > 0, but it makes a new
observation of arm 2. It will make this choice (and pay this price) as long as ps + 62 > p1 l.e.
p1 — p2 < é3. Thus, the maximum amount it is willing to pay for an observation of arm 2 is equal
to the exploration bonus §5.

e the similarity between graphs 2.a and 3.a and between graphs 2.b and 3.b,

e the rapid decrease of dg (n) during the first steps of the exploration, especially
in the case of unknown variance,

e the higher values of non-Bayesian bonuses (fig. 2) than the Bayesian (fig. 3).

With regard to this last point, it is to be noticed that because lim,_, t;‘/_zl = zg/2,

the non-Bayesian bonus is always equivalent to zg/5 - n~1/2 when n tends to infinity.
Moreover, according to Gittins we have

lim (0L e (Vg €[0,1)), (22)

nmee vy (0,)

and n-v, (0, n) always converges to a positive value as n tends to infinity. Therefore,
the Bayesian bonus behaves as K - n~! for some K > 0 as n tends to infinity. We
see that, in general, the non-Bayesian optimal behavior results in more exploration
than the Bayesian.

Before ending this section, we notice that all the algorithms presented here are
subject to the “sticking problem” (Kaelbling 1993, section 4.2.2): only one arm is
played infinitely often, and there is a non-zero probability that it is a non-optimal
arm that is selected. This limitation is present in every problem of adaptation to a
stochastic process: one can never be sure to have found the best alternative before
having tried all of them an infinite number of times. Clearly, this is in contradic-
tion to the necessity eventually to exploit the acquired knowledge. In response to
this problem, Sato et al. (1982, 1985, 1988, 1990) have developed the notion of
“asymptotic optimality” that consists of trying every alternative infinitely often,
while making the frequency of use of the estimated best tend to 1. It is noteworthy
that both the Bayesian and the non-Bayesian approaches lead to abandoning every
arm except the estimated best, and thus risk making mistakes from time to time.



11

2a. Known variance: §o (n) = zg/2/\/n 2b. Unknown variance: dg (n) = tg/_; //m
(the value for § = 0.001, n = 2 is 450.14)

Figure 2. Interval estimation (non-Bayesian) unit exploration bonuses for 6 =
0.8,0.6,0.4,0.2,0.1,0.05,0.02,0.01 and 0.002 (known variance) or 0.001 (unknown variance) (the
interval estimation bonus is a decreasing function of 8).

Ja. Known variance: &g (n) = v4 (0, n) 3b. Unknown variance: &g (n) = vg4 (0,1, n)

Figure 3. Gittins’ (Bayesian) unit exploration bonuses for g = 0.5,0.6,0.7,0.8,0.9,0.95,0.99 and
0.995 (the Gittins’ bonus is an increasing function of g).

3.2. Distributing the Learning Task

Our purpose is to use results from the theory of bandit problems, and particu-
larly equations (20) and (21), to define local measures of the uncertainty for the
multi-state problem. For this reason, we examine the possibility of distributing
the learning task by representing the problem of adaptation to a multi-state MDP
S=(X,A,P,R,y) (|X| > 1), as a set of | X| bandits, each with |A| arms.



12

The bandit problem associated with state x; will be called B;. The execution of
action ag in x; is equivalent to a pull of arm k& of B;. The distributed approach
consists in considering a different sub-system X; “playing” the bandit B;, for all i.
The reward earned by ¥; when it pulls arm k is p¥, to be specified.

3.2.1. Non-stationarity of each bandit problem

The first thing to do is to define p¥, the reward earned by sub-system X; when it
plays arm k. An obvious solution is to chose the reward received immediately after
the execution of ay in z;, i.e., p¥ follows the law

pF = rfj with probability pfj. (23)

However, in this case, each X; will consider exploitation to consist of maximizing the
expected immediate reward ¢F defined by (4). Thus, the overall system ¥ = |J, &;
is adaptively optimizing the one-step-horizon reward E (r(0)), which is often very
different from the infinite-horizon reward (1).

If we want to be able to manage the temporal credit assignment problem, the
reward received by X; must contain some information about the value of the arrival
states. An ideal solution is

pf = rfj +v v with probability pfj. (24)

An algorithm based on this law would avoid the drawback of definition (23). Un-
fortunately, such an algorithm is impossible to implement because we do not know

k

the true values v7, and we only have some time-varying approximations of them

called V¥ or Q¥ (equations (8) and (10)). Hereafter, we are limited to the definition

Vi
ko k J . " .
p; =1 +~v-max or with probability p;;, (25)

l l
Q;

that constitutes a direct adaptation of (24). In this case, the distribution of pf varies
as the V- or Q-values vary. Therefore, each bandit problem B; is not stationary, even
if the original problem S is. The consequences in imposing a forgetting mechanism
for each X; are important, and have already been stressed by Kaelbling (1993, p.
150).

3.2.2. Non-independence of different arms

If p¥ follows (25), then the reward delivered by arm k of bandit B; depends on the
estimated value of each possible arrival state. With both ADP and QL, the value
of a state is updated each time this state is visited. Thus, when X; chooses arm &
and X moves from z; to x;, the value of the arrival state z; is going to be modified
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at the next time step. As a consequence, the law followed by p# is going to change.
Similarly, this is the case for each pfl with k' # k, such that (i, j, k') is a possible
state transition.

In this way, the choice of an arm changes the distributions associated with other
arms. Thus, the fundamental hypothesis of independence of the different arms is
not respected, and the local sub-problems are not bandit problems.

3.2.3. Non-independence of different sub-problems

In the same way as above, we can show that the choice of arm %k in z; changes
the distributions of some pf with i/ # i. The consequence is that the different
sub-problems are not independent.

3.2.4. Conclusion

We see that a set of independent bandit problems constitutes an approximate and
false model of the original problem. Therefore, a decentralized approach based
on bandit problems is essentially heuristic, and may not have an exact theoretical
foundation. However, this should not discourage empirical studies of this approach.

3.3. Basic Algorithms

One of simplest ways to design algorithms is to assume that ¥; approximates pf
by a normal distribution, for all (i, k). Then we can use the results presented in
section 3.1.

3.3.1. Outline

Depending on whether we use a model of the process or not, V- or Q-values are
kept up to date using (8) or (10). Each time that transition (i, J, k) occurs, ¥;
receives the reward

!
Vi

pf = rf‘ + 7 - max or s (26)
l Ql'
b
then it updates:
e nf the number of pulls of arm &,

e /F, the mean of the rewards received from arm k, defined as (14),

e s the sampled standard deviation of these rewards, defined as (16).
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From these statistics, it calculates

ubf
02 - ﬁf + dzk (V (iv k)) y (27)
v
where
nk—1
tyi. /\/nk
. /2 i .
dlk el SZ. or = Sf . 60 (nf) (V (l, k)) s (28)

Vg (0, 1, nf)

for a given confidence coefficient 6 or discount factor g. The value §F represents a
local measure of uncertainty about the infinite-horizon rewards. It is an exploration
bonus adapted to the multi-state problem.

The non-stationarity of each B; is managed by simulating a forgetting mechanism
in each ¥;. In our applications, we calculate the statistics n¥, p¥ and s¥, and the
exploration bonuses 6F, on equally-weighted sliding windows of length L, (i.e.
using only the last L,,;, observations of pf)

¥, first tries every arm twice, then it always chooses an arm that maximizes ubf

or vf.

3.3.2. Fundamental equation

When p¥ follows (25) we have

‘/}l Vk

pi~FE (pf) = qu + prj -max [ or ~ or V(i k). (29)
- ! l k
j Q; Q;

Thus, the natural criterion (27) may be approximated by

k
NF e o + 6% (V (i, k). (30)

This is a direct way to design algorithms where the statistic ¥ is kept in memory
only because it is needed to calculate s¥. Upon seeing that the variables V¥ and
QF are better estimates of the quality of the state-action pair (i, k) than the mean
p¥ (especially if pf is calculated on a sliding window), we prefer to use equation
(30) instead of the original (27). Moreover, we consider that this equation is char-
acteristic of the algorithms developed in this section (as opposed to those defined
in section 4).
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1. Initialize:
— set the counters to O: nf»“j = nf =0 for all (7,7, k),
— initialize the sliding window of each state action pair (7, k),
— initialize the main variables: V¥ = 0 (ADP) or Q¥ = 0 (QL) for all (3, k).
2. Choose an action (the current state is ;):
— if there exists k' such that nf-“l < 2, then choose k = k',
— otherwise choose k which maximizes (30).
3. Execute action aj, observe arrival state z;.
4. Update variables:
— increment the counters nf and nfj,
— update the estimate ﬁ?j with (7), if using ADP,
— update the main variables:
ADP: update VLI,“I with (8) and (9) for different (i, k') such that n:.",
QL: update Qf with (10),
— add an observation to the sliding window of state-action pair (%,k) with (26)
(variance-based) or (32) (error-based),
—if nf > 1:
- update the statistics ﬁ? and .sf»“ with (14) and (16),
- update the exploration bonus 5? with (28).
5. Increment time, return to 2.

’
>0,

Figure 4. Outline of “—” algorithms’ variance- and error-based variants (ADP and QL).

3.3.3. Algorithms

Our algorithms are defined by the following set of formulas:

e the equations of ADP or QL: (7), (8) and (9); or (10) and (11);

e the definition of the reward pf introduced in the sliding windows: (26);
e the definition of the statistics g and s¥: (14) and (16);
e the definition of the exploration bonus: (28);

e the definition of the criterion of choice: (30).

Figure 4 provides an outline of the algorithms. We call these algorithms IDP—,
IEDP—, IQL— and TEQL— where :

e [ stands for “indices” and denotes the choice of the Bayesian framework, while
IE denotes the choice of a non-Bayesian algorithm,

e DP and QL stand for ADP and Q-learning,

e “—7 distinguishes these algorithms from those proposed in section 4.

TEQL— is very close to Kaelbling’s algorithm (1993, chap. 9). The two algorithms
differ only on the following points:

e we use equation (30) instead of the natural criterion (27) used by Kaelbling,
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e the mechanisms used to forget observations at the level of each X; are not the
same: Kaelbling uses a geometrical decay of statistics whereas we use sliding
windows.

3.4. Variants

Thrun (1992a, 1992b) has proposed classifying the techniques of action selection
according to the information used. The first distinction he introduces is between:

e undirected techniques that do not use any “exploration-specific” knowledge about
the learning process,

e directed techniques that remember knowledge about the learning process and
use it to direct exploration.

Undirected techniques proceed by drawing at random the executed action, in a
way that favors the estimated best. They are distinguished from each other by
the probability distribution used for these drawings. The two most used are the
semi-uniform (or e-greedy) distribution (e.g. Watkins 1989; Whitehead and Ballard
1991) and the Boltzmann law (e.g. Watkins 1989; Barto et al. 1991, 1995; Kaelbling
et al. 1996).

Most directed techniques are heuristic and are not theoretically motivated. How-
ever, they use the notion of an exploration bonus. The criterion they maximize
may be put in the form
‘/ik
Nf=| o | +6F+... (31)

Qf

where §¥ is an exploration bonus that measures the uncertainty in a particular way,
and the dots indicate that several bonuses of different nature may be added.

Thrun proposes to classify the directed techniques according to the information
used to select the actions. He distinguishes:

counter-based techniques that keep up-to-date counters n¥ of the number of times
that each state-action pair (i, k) has been tried, and use them during the choice
of the actions (e.g., Sato et al. (1985, 1988, 1991) asymptotically optimal algo-
rithms). When two actions have the same estimated value, they choose the one
that has been tried the least often previously;

error-based techniques that use the measured (or predicted) variations of the
variables V¥ or QF during their last (or next) update(s), in the rule of selection
of the actions (e.g., Moore 1990; Schmidhuber 1991a; Thrun and Moller 1991,
1992). In general, these techniques prefer the states or actions whose estimated
quality varied the most in the past, or is predicted to vary the most in the
future;
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recency-based techniques that deal with non-stationary problems by keeping in
memory the date of the last trial of each state-action pair, and choosing pref-
erentially the actions that have been tried the least recently (e.g. Sutton 1990,
1991a).

Some techniques are mixed-techniques, i.e., they use pieces of information of differ-
ent nature. This is achieved by adding several different exploration bonuses in (31)
(e.g. counter-/error-based techniques proposed by Thrun), or by defining mixed
exploration bonuses (see below).

3.4.1. Variance-based algorithms

Thrun’s lexicon does not cover the case of the algorithms presented in sections 3.1
and 3.3. Because the exploration bonus d; depends on njy (equation (20)), these
algorithms are counter-based techniques. However, the counters are not the only
information used in the exploration bonuses: the standard deviations o or si of
the rewards are present as well. When two actions have been tried the same number
of times and have the same estimated value, the algorithms choose the one which
delivers the most random reward. In this way, they show a preference for risk.
To qualify these algorithms, we introduce the following definition:

variance-based techniques measure the variability of the outcome of different
actions in order to calculate of their exploration bonuses.

Thus, the bandit-problem solutions of section 3.1 are variance-/counter-based tech-
niques. The algorithms for multi-state MDPs of section 3.3 (and Kaelbling’s al-
gorithm) are also variance-/counter-based techniques: their exploratory behavior
depends mainly on counters n¥ and standard deviation s¥ of different state-action
pairs (7, k). However, their case is more complicated: due to of the presence of the
variable V! or Qé in the right term of (26), they are also, to a smaller extent, error-
based techniques. In the following, we will refer to them simply as variance-based

IDP, IEDP, IQL and IEQL.

3.4.2. FError-based algorithms

The use of the rule
Vk

K3

pf = 52 (32)

instead of (26) is another way to define the local reward received by sub-system
¥; when it pulls arm k. In this way, all that is developed in section 3.2 is still
true, and equation (30) is still an approximation of (27). The algorithms using this
law measure the variations of the V- or Q-values during their last updates. Thus,
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they are error-/counter-based techniques using mixed exploration bonuses. In the
following, we will refer to them simply as error-based IDP, IEDP, IQL and IEQL.

3.4.3. Worst-case algorithms

The development of the algorithms presented here was motivated by the following
facts. A wide class of problems are characterized by a sparse reward matrix R, i.e.
rfj = 0 for most triples (¢, 7, k)). In this case, if the V- or Q-values are initialized to
0, then they remain zero during a first stage that may last for a long timeS. Thus,
most of the standard deviations s¥ and exploration bonuses d* of the algorithms
based on (26) or (32) degenerate to 0 during the first steps of the experience.
Therefore, the behavior of variance- and error-based algorithms is greatly degraded,
and it may turn to random walk, arbitrary choice of always the same actions, or
greedy exploitation.
To avoid this problem, we first note that if

Tu ©f maxrf,  and Tm = min ¥, (33)

k.
ik
and the initial V- or Q-values satisfy

Vik
oo o | <M vV (i, k), (34)
L=~ Q* L=~

k

then this equation is satisfied at each time ¢. Therefore, the standard deviation o

of a random variable defined by (26) or (32) satisfies

™ — Tm def . .
o < 21‘(417_7) = omar (¥ (i, k)) . (35)

We propose to use this result and to suppose that the standard deviation of p¥ is
known and equals a4, for all (¢, k). Then we use the formulas for normal arms
with known variance (13) and (18) and define the exploration bonus as

zaj2//nf
or

Vg (0, nf)

= Opmaz-do (nf) (V (i, k)). (36)

62' = Omax

The statistics pf and s¥ are not used anymore, and neither are the sliding widows.
The algorithms are then greatly simplified. We call them worst-case IDP—, IEDP—,
IQL— and TEQL—, because they suppose that the standard deviation is always
equal to its biggest (worst) possible value. They are defined by the following set of
formulas:

e the equations of ADP or QL: (7), (8) and (9); or (10) and (11);
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1. Initialize:
— set the counters to O: nf»“j = nf =0 for all (7,7, k),
— initialize the main variables: Vtk =0 (ADP) or Qf =0 (QL) for all (3,k).
2. Choose an action (the current state is ;):
— if there exists k’ such that ni-“l = 0, then choose k = k/,
— otherwise choose k which maximizes (30).
3. Execute action aj, observe arrival state z;.
4. Update variables:
— increment the counters nf and n?j,
— update the estimate ﬁ:»“j with (7), if using ADP,
— update the exploration bonus 5? with (36),
— update the main variables:
ADP: update thfl with (8) and (9) for different (i, k') such that ni.“,l > 0,
QL: update Qf with (10).
5. Increment time, return to 2.

Figure 5. Outline of “—” algorithms’ worst-case variant (ADP and QL).

e the definition of the exploration bonus: (36);
e the definition of the criterion of choice: (30).

Figure 5 provides an outline of the algorithms.

Worst-case algorithms are pure counter-based techniques. They avoid the de-
generation of the exploration bonuses that happens with sparse reward matrices.
However, they need to know in advance the difference (rasr — rp,), and thus, they
need more information than the previous algorithms.

From the optimal control point of view, the rewards represent the objective func-
tion and thus they are initially given. From the decision theory point of view, the
rewards represent the utility function, also known in advance. In general, we con-
sider that specifying its reward structure to a system is telling it its task. Thus, as
long as we are concerned with optimization and problem solving, the rewards are
always known in advance.

However, if this is not the case and the difference (rpr — rp,) is initially unknown,
then this value must be measured on-line. In this case, a positive constant must be
used in place of 0,4, as long as two different rewards have not been received. The
value of this constant has no influence on the algorithm’s behavior.

3.5. Conclusion

As we have shown earlier, the algorithms developed in this section do not rely on
rigorously valid theoretical foundations. However, they represent rational proposi-
tions supported by common sense arguments.

Each ; uses an optimal solution of single-state problems, exploring more or less
each action, and most likely ultimately converging to the estimated best. The
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Figure 6. Task 1 (v = 0.99) (Meuleau 1996).

aggregation of these local behaviors works well with problems where the different
states are visited equally often. However, it is held in check by particular config-
urations of the environment where some states are visited much more often than
others. As a matter of fact, because we consider a set of |X| independent bandit
problems, each X; functions within its own concept of time. For X; time elapses
only when it plays, and it is frozen otherwise. Thus, ‘—’ algorithms may be misled
by problems where some important states are rarely visited.

This is the case of the problem represented in fig. 6. In this deterministic problem,
one always has the choice of going to the next index state and winning nothing,
or returning to state z¢ and receiving 2. Once arriving in the higher index state
x5, one may stay there and win 10, or return to zg and win 2. With v = 0.99, the
optimal policy is to choose a; everywhere. However, this may appear late in the
V- or Q-values, because the reward 10 must be back-propagated along the whole
chain of states. Moreover, state zg is visited very often. Thus, ¥y may become
self-confident too early, and start exploitation before the real V- or Q-values are
known. It may then converge to the sub-optimal action ag and prevent further
exploration.

The deterministic problem presented in fig. 7 was designed by Watkins (1989) to
be misleading. It functions with the same principle as task 1: X9 may become self-
confident before the reward 2 has been back-propagated until zg, and then converge
on the sub-optimal action a;.

To solve this kind of problem, we introduce now the second basic principle of our
algorithms.

4. Back-Propagation of Uncertainty

Local measures of uncertainty are convenient, but a direct use of them leads to
a local-scale reasoning about information that is insufficient in many multi-state
environments. The back-propagation of the exploration bonuses is an easy way to
simulate global-scale reasoning about the uncertainty, using only its local measures.
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Figure 7. Task 2 (v = 0.9) (Watkins 1989).

4.1. Local vs. Global Exploration Policies

We say that the algorithms based on (30) represent local exploration policies, be-
cause their decisions do not take into account the uncertainty attached to states
other than the current state.

In contrast, we say that an algorithm implements a global exploration policy if
it takes into account, during the choice of its actions, the uncertainty attached to
states other than the current state. Intuitively, global exploration strategies are
such that an observation made in some state z; may change the decision in other
states z; (j # ), independently of any change in the V- or Q-values that may result
from the observation. An instance of global scale reasoning is presented in fig. 8.
These strategies should not be misled by problems such as tasks 1 and 2.

There are a few algorithms able to simulate global exploration policies. To our
knowledge, only three techniques are available:

1. Bayesian adaptive control, applied to finite multi-state MDPs by Martin (1967);

2. Feldbaum’s (1965) “caution and probing” technique, applied to dynamic pro-
gramming by Bar-Shalom (1981);

3. Sutton’s Dyna-Q+ algorithm (1990).

The first two proceed by introducing the knowledge about the process into the
state of the system, which is then called “super-state” or “information-state”. Then,
applying DP to the reformulated problem simulates global scale reasoning about
uncertainty. Although this approach constitutes an elegant theoretical solution,
it requires prohibitive amounts of computer time and space, and thus it is not
applicable to most real-world problems.

Sutton’s Dyna-Q+ algorithm (1990) is the first instance of an algorithm’s using
the principle of back-propagation of uncertainty. It seems that it is the only realistic
solution proposed before ours. We will first present our algorithms, and then show
their similarities and differences with Dyna-Q+ (section 4.4).
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$

8a. Time t: in state x;, the system chooses the 8b. Time t + 1: the observation of
non-optimal action aj because it attaches transition (2, 7, k) reduces the
a lot of uncertainty to it and wants to uncertainty attached to action
explore. A part of this uncertainty is due ay, in state ;. In z;, the
to the fact that the action a; of a known possible system continues to explore
arrival state x; has not been tried yet. and chooses action a;.
5 7
? -
) AN

$

8c. Time t + 2: after the next state transition, the

uncertainty attached to a; in z; is reduced and, as a consequence,

the uncertainty attached to aj in z; is reduced as well.

Figure 8. An instance of global-scale reasoning about uncertainty.



23

4.2. Back-Propagation of Exploration Bonuses

Our propositions will be presented in three steps, each one corresponding to an
improvement of the algorithms. We shall be concerned first with ADP; the case of
QL will be examined in section 4.2.3.

4.2.1.  Basic principle

The fact that IDP— and IEDP— represent only local exploration policies clearly
appears in the fundamental equation (30):

NE vkt

~ @+ ) B max V) )| + 6
J
o () DA max V] (Y( k). (37)
J

We see that only the exploration bonus associated with the next action is present.
Thus, X; is not motivated in any way by observations that could be made in states
other than z;, for all 7.

To take into account the uncertainty attached to states other than the current
one, the associated exploration bonuses must be present in the criterion. If we use,
for instance

NS (G +0F) 47 30l - max (V] + 45) (Vi k), (38)
J

then the next two observations are taken into account. The exploration bonus of
the second action is discounted as a reward. When ¢ = j and k& = [, the bonus of
the second action is over-evaluated because the decreasing of 65 after the transition
(4,7, k) is neglected: 5;» == (nf) is used instead of § (nf + 1).

If we accept approximations of this kind, it is possible to take into account the
uncertainty attached to every state that we may reach in the future. To do this,
we will try to find the solution of Bellman’s system defined by

vf = (@ +0F) + ) By - maxy; (¥ (i, k). (39)
J

using, for instance, an asynchronous DP algorithm based on the unit operation

NE e (a4 85) + 4 Y07t - max (40)
J

In this way, the exploration bonus of every future action is represented implicitly in
the variables Nf. The bonuses are discounted at the same rate as the rewards. As
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in (38), the decreasing of dg (n) with n is neglected, and thus most of the bonuses
are over-evaluated”.

Despite this approximation, an algorithm based on (40) is a global-scale explo-
ration strategy: each decision takes into account the uncertainty in each state
attainable in the future, and the observation of a in z; implies an update of 6,
which may cause a change of the decision in some state z; (j # 7). This constitutes
an approximate solution for two reasons:

1. the uncertainty is measured with formulas valid for normal bandit problems,
2. the decrease of dg (n) is neglected.

Therefore, the fundamental principle of the algorithms developed here is to add the
exploration bonuses to rewards and to introduce them into the DP process. They are
then back-propagated through the state lattice to simulate global-scale reasoning
about uncertainty.

4.2.2.  Scaling of the exploration bonuses

We have stressed in section 3.1.4 the importance of the order of magnitude of
the exploration bonuses in the different solutions of bandit problems: the optimal
behavior defined as maxy (pr + i) may be significantly changed if we multiply all
the bonuses d; by a positive constant.

The Bayesian and non-Bayesian statistics propose to calculate the exploration
bonus d; starting from a unit exploration bonus g (nx), whose value varies between
rather close bounds as a function of the external parameter 6 or g. The unit bonus
is then scaled by the standard deviation of py (measured or not), and thus, the
resulting bonus d; may be considered as proportionate to py.

The algorithms developed in the previous section keep close to these propositions,
because the criterion N defined by (30) is an average cumulated reward V*, plus
an exploration bonus & proportionate to this quantity, by the presence of the
standard deviation s¥ or ¢4, in its definition (28) or (36). Informally, we say that

(30) has the form

V+iy = (Z’Yt'r) + v, (41)
t=0

where V' a mean V-value, and dy and r represent, respectively, an exploration bonus
proportionate to V and a mean reward.
With the same notation, the order of magnitude of the criterion (40) is

[e%e] . 5’
YAt bv) =V 4 (42)
t=0 1_7
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' > 1. Because v

We see that the bonus is multiplied by the constant (1 — )
is usually close to 1, (1 — 7)_1 is usually a great positive value. Therefore, the
algorithms based on (40) explore much more than the original algorithms.

This problem is easily solved by multiplying all the exploration bonuses by (1 — %)
before introducing them into the DP process. The fundamental equation (39) then

takes its final shape

vE= (@40 (1=) 49 Yol maxst (V(R), (43)
J

and the associated DP equation is

Nik A (‘ﬁ +521'€ (1- 7)) +72}3§j 'HllaXNJl». (44)
J

The criterion is thus brought back to the order of magnitude (41), where dy is pro-
portionate to expected cumulated rewards V, but it is composed at v* (1 — v) 100%
of the bonus associated with the action executed at time ¢, for all ¢.

Scaling the exploration bonuses to take into account the discounting is the second
technique used in the algorithms presented in this section. Figure 9 describes their
operation in comparison with ‘=’ algorithms.

4.2.3.  Initialization of variables

Equation (44) allows the derivation of efficient indirect algorithms. Now we try to
apply the ideas developed above to QL.
The QL equation associated with (44) is

ANﬁ :a(nf) (rfj—l—(Sf(l—’Y)) +'y-mlaxNJl» —Nf . (45)
This operation is executed each time that transition (i, j, k) occurs, and only at
these times. This is the main limitation of QL: it cannot back-propagate the value
of a state-action pair without passing through this state and executing this action.
Therefore, it must travel through the problem not only for the needs of exploration,
but also to calculate the estimated optimal policy, i.e. for the needs of exploitation.
This weakness has been illustrated by the experiments of Barto et al. (1991, 1995).
It is at the origin of the development of intermediate solutions such as Sutton’s
(1990, 1991b) Dyna architecture.

In the case of our “N-learning”, this drawback may be disastrous because the
bonus §¥ varies at each transition (i, j, k), for all 5. The MDP implicitly defined by
(43) changes at each time step, i.e. much faster than QL solves it. Thus, it appears
that a model of the problem is required for implementing the back-propagation of
exploration bonuses in a perfect manner.

However, we think that it is possible to have at least an approximate mechanism
of back-propagation of uncertainty in a direct algorithm such as QL. We argue that,
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DP vre

MAX

9a. Local exploration (equation (30)): DP calculates the V-values in an iterative way, starting
from the rewards R and the estimated probabilities P (figured as P). When the V-values are
“ready”, the exploration bonuses § are added to them to get the criterion N that is maximized at

each time step.

R +8.(1-y)
P

MAX

9b. Global exploration (equation (44)): the exploration bonuses are scaled and added to the
rewards before starting the DP iterations. Hereafter, DP directly calculates the variables N that

are maximized at each time step.

Figure 9. Functioning of bandit problem-based algorithms.

even if it is not rigorously stated, equation (45) deserves to be tried. However, some
preliminary considerations about the initial values of the variables are necessary.

Theoretically, the initial Q-values do not matter for QL’s convergence, the main
requirement being that every action is tried infinitely often in each state. In prac-
tice, the Q¥ are often initialized to 0, because we suppose some symmetry of the
problem.

Here, we try to manage the impossibility of an infinite number of trials of each
state-action pair. The N-values are made to reflect considerations about uncer-
tainty and inaccuracy, and the actions that maximize these variables are executed
exclusively. Therefore, their initial value is very important. One can easily see
that setting them to 0 is not satisfying at all: because uncertainty is great in the
beginning of the experience, a positive and rather high initial value is better.

Observing that:

1. if the Q-values are initialized to 0, only the part due to uncertainty is present
in the initial value of NF,
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2. in the worst-case algorithms, each action a; is tried at least once in each state
z;, and then the associated exploration bonus éF is initialized to its value cor-
responding to one observation:

def Zaf2
(51 = Omazx * (50 (1) = Omaz or y (46)

vg (0,1)

3. in the variance- and error-based algorithms, each action is tried twice in each
state, and the initial value of §F varies as a function of s¥, for all (i, k);

we propose to initialize the N¥ to the value d; defined
e by equation (46) in the worst-case algorithms,

e as an external parameter in the case of variance- and error-based algorithms.
Because this parameter represents the exploration bonus associated to an action
that has been tried only once, one must assign to it a value greater than any
possible exploration bonus. For instance, if the difference 3 —r,, is known, one
could choose d1 > 0pmaz - 00(2). Moreover, if one wants to preserve the convexity
of the exploration bonus with respect to n (see fig. 2 and 3), one should choose

81> Omaz (2 80(2) — 80(3)).

With its main variables initialized to this rather high value (because of the pres-
ence of the factor (1 — 'y)_l in the definition (35) of o4z ), the algorithm is forced
to explore the environment completely. Actually, the simulation results presented in
the next section show very positive results of a system based on (45) if we introduce
this later sophistication.

Therefore, the last technique used in the algorithms presented in this section is
to initialize the main wvariables with the value of an exploration bonus after one
observation, or with another large positive constant.

This is an instance of the heuristic called “optimism in the face of uncertainty”
(Kaelbling et al. 1995) already used by several authors to favor exploration (Schmid-
huber 1991, Moore and Atkeson 1993, Kaelbling 1993, Koenig and Simmons 1996).
Its use is perfectly justified in our framework, because the main variables reflect
the uncertainty which is high in the beginning of experiments.

This heuristic is useless in the case of ADP, as long as the DP stage between two
decision-times is performed synchronously. In this case, using it is equivalent to
adding the same positive constant to each N¥ at each time t. However, this heuristic
is necessary when we apply the ideas developed above to any asynchronous DP-
based algorithm which executes back-ups of some state-action pairs before having
tried all of them once. This is true for QL as well as for Barto et al. ARTDP
algorithm (1991, 1995) and for Sutton’s Dyna architectures (1990, 1991b).
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1. Initialize:
— set counters to 0: nfj = nf = 0 for all (3,7, k),
— initialize the sliding window of each state action pair (7, k),
— initialize the usual main variables: Vzk =0 (ADP) or Qf =0 (QL) for all (1, k),
— initialize the exploration bonuses: 511»“ = ¢; for all (4,k),
— initialize the special main variables: Nf = ¢; for all (4,k).
2. Choose an action (the current state is ;):
— if there exists k’ such that n?l < 2, then choose k = k/,
— otherwise choose k = arg maxy Nikl.
3. Execute action aj, observe arrival state z;.
4. Update variables:
— increment the counters nf and nf-“j,
— update the estimate ﬁfj with (7), if using ADP,
— update the usual main variables:
ADP: update Vil,“l with (8) and (9) for different (:/, k') such that nf,
QL: update Qf with (10),
— add an observation to the sliding window of state-action pair (z,k) with (26)
(variance-based) or (32) (error-based),
—if nf > 1:
- update the statistics ﬁf and sf with (14) and (16),
- update the exploration bonus 5;‘ with (28).
— update the special main variables:
ADP: update Nt.k,l with (44) and (9) for different (:/,k’) such that nf,l > 0,
QL: update Nf with (45),
5. Increment time, return to 2.

’
>0,

Figure 10. Outline of “+” algorithms’ variance- and error-based variants (ADP and QL).

4.3. Algorithms

Using the same nomenclature as in section 3, we call variance- or error-based
IDP+, IEDP+, IQL+, and IEQL+ the algorithms defined by the following set of

formulas:

the equations of ADP or QL: (7), (8) and (9); or (10) and (11);

e the equation that is chosen for the reward p¥ introduced in the sliding windows:

(26) or (32);
e the definition of the statistics g and s¥: (14) and (16);
e the definition of the exploration bonus: (28);
e the special ADP or QL equation: (44) or (45).

These algorithms are depicted in fig. 10.

These algorithms use two sets of variables : the V¥ or QF, and the NF. All the
operations usually executed on the first (V or @) are also applied to the second
(N). The first are used to calculate the sample standard deviation s¥, the second
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1. Initialize:
— set the counters to 0: n?j = nf = 0 for all (¢, 5, k),
— initialize the main variables: Nf = Omaz * 00 (1) for all (4, k).
2. Choose an action(the current state is z;):
— if there exists k’ such that nfl = 0, then choose k = k/,
— otherwise choose k = arg maxy, Nfl.
3. Execute action aj, observe arrival state z;.
4. Update variables:
— increment counters nf and n?j,
— update the estimate ﬁfj with (7),if using ADP,
— update the exploration bonus 5? with (36),
— update main variables:
ADP: update Nik,l with (44) and (9) for different (¢’, k') such that nf,l >0,
QL: update Nik with (45).
5. Increment time, return to 2.

Figure 11. Outline of “+" algorithms’ worst-case variant (ADP and QL).

are the main variables of the algorithms. Because of this double set of variables,
the time of calculation is multiplied by two®.

Worst-case IDP+, IEDP+, IQL+, and IEQL+ do not use two sets of variables,
because the standard deviations are not measured but are taken at their greatest
possible value. These variants use the following formulas:

e the definition of the exploration bonus: (36);
e the special ADP or QL equations: (7), (9) and (44), or (11) and (45).

They are represented in fig. 11. It is important to be note that their complexity
is very close to the complexity of the original algorithm (ADP or QL) with greedy
exploitation.

4.4. Other Instances of Back-Propagation of Uncertainty

The back-propagation of uncertainty has already been used by Sutton, and it may
be implemented in every algorithm that uses an exploration bonus. Moreover,
a similar mechanism may be used to direct the first step of the exploration of
synchronous ADP.

4.4.1.  Sutton’s Dyna-Q+

In a paper about the applications of Dyna architectures to QL, Sutton (1990) defines
two algorithms:

Dyna-Q— that uses the usual QL equation (10) and always chooses the action
that maximizes the recency-based criterion
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QF +¢y/Af, (47)

where AF is the time elapsed since the last try of the state-action pair (i, k),
and € > 0 is an external parameter;

Dyna-Q+ that does not use (10) but

AQ; = a (n]) [(r;} + a\/A?) +v-maxQ; — Q7| | (48)

and always chooses the actions that maximize the Q-values calculated in this
way.

Equation (48) is very close to (45), the main difference being the way in which
the exploration bonus is defined: the stationary bandit problem’s bonus (28) or
(36) is replaced by Sutton’s recency-based exploration bonus that is adapted to
non-stationary environments. Note that:

e it is useless to scale the exploration bonuses by the factor (1 — =), because
Sutton’s bonuses are directly proportional to the external parameter e, thus
changing ¢ for (1 — %) has the same effect;

e Sutton says to “simulate state transitions that have never occurred”. This
results in back-propagating the bonuses of actions that have never been tried
before, and thus this is an alternative to the initialization of N¥ with large
positive values.

Thus, Sutton already used the back-propagation of exploration bonuses. However,
our work is innovative in the following two ways:

1. We have proposed algorithms for stationary MDPs with adapted definitions of
the exploration bonuses.

2. Although it is derived from QL, Dyna-Q+ uses a model of the unknown process.
Thus, this is not really a direct algorithm, and one could think that the principle
of back-propagating uncertainty could not be made to work in direct algorithms
(cf. e.g. Thrun 1992a). However, IQL+ and TEQL+ are completely direct
algorithms that successfully implement this principle (see section 5).

Like ours, Sutton’s experiments show an important improvement of the algo-
rithm’s performance due to back-propagation of exploration bonuses. This consti-
tutes a convincing empirical demonstration of the utility of this mechanism.
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4.4.2.  Directed exploration

It is possible to introduce the back-propagation of uncertainty in every algorithm
that uses exploration bonuses, as we did in section 4.2. For instance, the differ-
ent directed techniques presented by Thrun (1992a) use a criterion of the form
(31). Therefore, we can build a ‘4’ version of each one by introducing the back-
propagation of exploration bonuses. Note that:

e the scaling of the exploration bonuses is useless when the bonuses are directly
proportional to an external parameter, as are Sutton’s and most of Thrun’s
bonuses. In this case multiplying the external parameter by (1 — ) has the
same effect;

e as stated in 4.2.3, the initialization of the main variables with a positive con-
stant is unnecessary in synchronous ADP, since this is equivalent to adding a
positive constant to each variable at each time. However, it should be used in
asynchronous algorithms such as ARTDP and QL.

4.4.3. The first steps of ADP

Synchronous and Gauss-Seidel versions of ADP are characterized by the fact that
each state-action pair (i, k) is backed up at least once during each DP stage, between
two decision-times (cf. Barto et al. 1991, 1995). Thus, these algorithms cannot
calculate the value function before the MLE (7) is completely defined, i.e. each
action has been tried at least once in each state (n¥ > 0, for all (i, k)). To achieve
this, one will force the algorithm to choose an action that has never been tried in
the current state, each time that such an action is available (i.e. the algorithms
first try each action once in each state). However, this does not define a complete
policy, since we have not decided what to do when the algorithm returns in a state
where every action has already been tried, while the MLE is still incomplete.

A completely defined strategy is, for instance: in each state, try every action in an
arbitrary order and in a cyclical way, until the MLE is complete. This is equivalent
to always choosing the actions that minimize the counter n¥, the index k determin-
ing the order in which actions are selected. Therefore, the counters nf represent a
kind of “exploration penalty” that must be minimized for exploration. In regard
to this penalty, the algorithm works in a greedy way, i.e. it does not anticipate
penalties other than the immediate. For this reason, the algorithm constitutes a
local exploration policy.

As in section 4.2, we can deduce from this local criterion a global exploration
policy. It consists of always choosing the actions that minimize the variable ¢F

defined by

: 5 min € if ot
c* :{ ng oy X5 piy - min & if nf > 0, (V(i, k). (49)

! 0 otherwise,
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These equations can be solved using an asynchronous DP algorithm that does not
back-up the state-action pairs (i, k) such that n¥ = 0.

5. Numerical Simulations

Extensive numerical simulations have been run to test the algorithms presented in
this paper and to compare them with some well-known techniques for action selec-
tion. In general, these experiments show that very good performance is attained by
the ‘+’ algorithms, particularly their worst-case variants. A representative subset
of these results is reproduced here.

5.1. Experimental Protocol

The protocol that we followed is very close to Kaelbling’s (1993, chap. 9). First,
we implemented a selection of algorithms including our own. Then, we set up a
benchmark of several small MDPs taken from previous material, or that we built
to cover the set of possible problems as widely as possible. Finally, we ran each
algorithm on each problem, hiding the transition probabilities so that the algorithm
must discover them on-line. During these experiments, we measured the evolution
of the rewards received by the algorithms as a function of time and of other perfor-
mance criteria. Here, we present the results obtained with 3 environments of our
benchmark. More results are available in Meuleau’s thesis (1996).

5.1.1. Algorithms

The results we present were obtained with the following 16 exploration techniques:

e two undirected techniques: the semi-uniform distribution and Boltzmann law,
with constant parameters Pyes: and T (cf. Thrun 1992a, 1992b),

e a selection of directed techniques:

— Sato et al.’s (1988) asymptotically optimal technique,

— Sutton’s (1990, 1991a) recency-based technique, implemented in its local
form as in Dyna-Q— (see section 4.4.1),

— our 12 proposed techniques: variance-based, error-based and worst-case 1
and IE algorithms, implemented in their local (=) or global (+) forms.

Each technique was implemented both in QL and in a version of ADP that ex-
ecutes two iterations of Gauss-Seidel DP after each state transition®. This consti-
tutes a total of 32 different algorithms.
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5.1.2. FEnvironments

The results presented here concern three stochastic MDPs used as testing environ-
ments.

Tasks 1 and 2 are derived from the deterministic MDPs presented in figs. 6 and
7 respectively (section 3.5), by including 20% inherent randomness: each time that
an action is chosen by an algorithm, there is a 0.2 probability that the other action
is executed, without the system’s being aware of this error. This probability value
was chosen because it leaves the optimal policy unchanged.

These two environments were built to mislead local exploration policies. As we
will see, it appeared during the simulations that task 1 represents a very difficult
problem for these techniques, whereas task 2 is less misleading.

Task 3 is a five-state, three-action MDP taken from Sato et al.’s (1988) paper.
Because it is characterized by a positive transition matrix (pfj > 0 for all (7, %)),
this problem should not favor global exploration policies.

Therefore, the three environments used in this paper are of decreasing difficulty
for local exploration policies. Note that task 2 presents a sparse reward matrix and
thus it may mislead variance- and error-based algorithms.

5.1.3. Measures

An experiment consists of testing an algorithm in an environment, after having
fixed the algorithm parameters. Each experiment has a fixed duration of 5000
time-steps. The initial state of the system is z¢ in the case of tasks 1 and 2, and is
drawn at random and uniformly in the case of task 3.

The performance of an algorithm during an experiment is defined as the average
reward that it receives per time-step. It is interesting to compare this measure with
the optimal performance, i.e. the expected rate of reward if one always executes the
optimal policy defined by (5) (which is reachable only if the problem is known in
advance). Howard (1960) has developed a technique for calculating this data. The
results of these calculations will be presented with the simulation results.

Note that the “optimal performance” defined above is not the greatest expected
performance possible. Instead, the greatest expected performance is realized by the
policy that maximizes a 5000-step horizon criterion

E (Z r(t)) , (50)

t=0

which usually differs from policy (5). This suggests using the discounted cumulated
reward received during the experiment as performance criterion, so that the policy
that realizes the greatest expected performance is very close to the optimal policy
(5). '° However, early experiments showed that this criterion does not establish any
discrimination between the different algorithms, as it places too much emphasis on
the first steps of the experiments when all the algorithms are equally as inefficient.
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Another measure used is the rate of convergence of the algorithms over several
experiments in the same environment. This is the percentage of times that the
estimated optimal policy is precisely the optimal policy (5) at the end of the run.

The last measure recorded is the learning curve. This is the graph showing the
average reward received at time ¢, as a function of ¢ (averages are calculated over
several experiments in the same environment). Because these raw data are always
very noisy, they have to be smoothed by moving averages.

5.1.4. Protocol

Two series of experiments are executed for each algorithm and each environment:

1. a first set of experiments allows for optimizing the algorithm parameters. This
is done by looking at the evolution of the average performance over 100 exper-
iments, as a function of these parameters. See Meuleau (1996) for more details
about parameter optimization;

2. a second set of 1000 experiments is conducted with the parameters set to their
optimal value. Then we measure the rate of convergence and draw the learning
curves.

Note that only the best variants (variance-based, error-based, or worst-case) of our
algorithms were submitted to the second series of experiments.

5.2. Simulation Results and Comments

Simulation results are presented in tables 1 to 3, and in figures 12 to 14.

5.2.1. Task 1

Task 1 (table 1, fig. 12) is the most discriminating of the three problems. Results
in this environment clearly show the superiority of directed exploration techniques
over undirected, and of global exploration over local. This classification is striking
in the case of QL, and less apparent, but still present, in the case of ADP.

The observed oscillating behavior of Sutton’s recency-based QL is characteristic
of this exploration technique: first, the algorithm finds the local optimum defined
as always choosing the action ag. As time passes, the algorithm is pushed by the
recency-based exploration bonuses to explore more profoundly. Then it finds the
optimal policy. However, the algorithm will never converge on the optimal policy,
but instead will regularly restart exploration. This behavior is adapted to non-
stationary environments. In stationary environments, it allows a good convergence
rate, but poor performance.
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Table 1. Simulation results for task 1: performance of the algorithms (standard deviation), and
rate of convergence (conv.) of the best variant (vb.: variance-based, eb.: error-based, wc.: worst-
case). The expected optimal performance (attained when the problem is known in advance) is

3.02.

Exploration policy QL ADP

Semi-uniform distribution 1.60 (0.19), conv. = 46.5 % 2.34 (0.55), conv. = 73.2 %
Boltzmann law 1.53 (0.38), conv. = 58.2 % 2.67 (0.31), conv. = 98.4 %
Sato (asymptotically optimal) 1.82 (0.36), conv. = 28.3 % 2.62 (0.54), conv. = 82.3 %
Sutton (recency-based) 2.28 (0.23), conv. = 99.6 % 2.77 (0.26), conv. = 99.8 %
vb. IEQL— or IEDP— 1.80 (0.47) 2.79 (0.27)

eb. IEQL— or IEDP— 1.80 (0.51) 2.81 (0.23), conv. = 97.1 %
wc. IEQL— or IEDP— 2.00 (0.48), conv. = 22.0 % 2.21 (0.18)

vb. IQL— or IDP— 1.66 (0.55) 2.81 (0.27), conv. = 99.2 %
eb. IQL— or IDP— 1.68 (0.42) 2.80 (0.31)

wc. IQL— or IDP— 2.03 (0.37), conv. = 41.7 % 2.18 (0.19)

vb. IEQL+ or IEDP+ 2.78 (0.13) 2.85 (0.28)

eb. IEQL+ or IEDP+ 2.61 (0.15) 2.88 (0.25), conv. = 98.5 %
wc. IEQL+ or IEDP+ 2.84 (0.16), conv. = 79.7 % 2.88 (0.20), conv. = 95.3 %
vb. IQL+ or IDP+ 2.57 (0.15) 2.83 (0.33)

eb. IQL+ or IDP+ 2.53 (0.15) 2.83 (0.33)

wc. IQL+ or IDP+ 2.85 (0.16), conv. = 88.2 % 2.87 (0.26), conv. = 97.7 %

average reward

Boltzmann

1000 1500 2000 2500 3000

time

Figure 12a. Learning curves of Q-learning for task 1.

3500 4000

4500
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Figure 12b. Learning curves of adaptive dynamic programming for task 1.

Table 2. Simulation results for task 2: performance of the algorithms (standard deviation), and

rate of convergence (conv.) of the best variant (vb.: variance-based, eb.:

error-based, wc.: worst-

case). The expected optimal performance (attained when the problem is known in advance) is
0.245.

Exploration policy QL ADP

Semi-uniform distribution 0.192 (0.011), conv. = 91.4 % 0.216 (0.022), conv. = 88.8 %
Boltzmann law 0.193 (0.019), conv. = 88.5 % 0.218 (0.025), conv. = 83.3 %
Sato (asymptotically optimal)  0.214 (0.012), conv. = 96.3 % 0.232 (0.018), conv. = 97.2 %
Sutton (recency-based) 0.215 (0.008), conv. = 100.0 %  0.228 (0.016), conv. = 98.8 %
vb. TEQL— or IEDP— 0.102 (0.028) 0.231 (0.019)

eb. IEQL— or IEDP— 0.104 (0.034) 0.232 (0.016), conv. = 98.3 %
wc. IEQL— or IEDP— 0.221 (0.014), conv. = 99.7 % 0.223 (0.014)

vb. IQL— or IDP— 0.103 (0.034) 0.231 (0.020)

eb. IQL— or IDP— 0.100 (0.025) 0.231 (0.017)

wc. IQL— or IDP— 0.217 (0.015), conv. = 99.9 % 0.232 (0.19), conv. = 98.5 %
vb. IEQL+ or IEDP+ 0.179 (0.003) 0.233 (0.017), conv. = 97.6 %
eb. TEQL+ or TEDP+ 0.179 (0.004) 0.232 (0.018)

wc. IEQL+ or IEDP+ 0.235 (0.008), conv. = 100.0 %  0.228 (0.017)

vb. IQL+ or IDP+ 0.179 (0.004) 0.231 (0.020)

eb. IQL+ or IDP+ 0.179 (0.004) 0.231 (0.19)

wc. IQL+ or IDP+ 0.238 (0.007), conv. = 100.0 %  0.232 (0.017), conv. = 98.0 %
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Figure 13. Learning curves for task 2.
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5.2.2. Task 2

Task 2 (table 2, fig. 13) is less discriminating. In the case of QL, it highlights the
same classification of the techniques as task 1. In the case of ADP, results do not
show a superiority of global exploration over local.

Variance- and error-based IQL and TEQL suffer from the degeneration of the
exploration bonuses due the sparse reward matrix (cf. 3.4.3). However, this does
not happen with indirect algorithms.

The most surprising fact is that the best performance is attained by direct algo-
rithms: IQL+ and TEQL+ perform better than IDP+ and IDP+. This phenomenon
was observed in almost half of the environments of our complete benchmark. Fur-
ther experiments are needed to understand this result which suggests that a model
of the problem is not necessary if the exploration policy is efficient, at least in small
environments.

5.2.3. Task 3

Task 3 (table 3, fig. 14) was chosen because it should not favor global exploration
policies. Simulation results fit this expectation rather well: they show a supe-
riority of directed exploration over undirected, but no clear superiority of global

Table 3. Simulation results for task 3: performance of the algorithms (standard deviation), and
rate of convergence (conv.) of the best variant (vb.: variance-based, eb.: error-based, wc.: worst-
case). The expected optimal performance (attained when the problem is known in advance) is
1.05.

Exploration policy QL ADP

Semi-uniform distribution 0.87 (0.11), conv. = 78.4 % 0.89 (0.11), conv. = 80.9 %
Boltzmann law 0.86 (0.13), conv. = 60.6 % 0.85 (0.16), conv. = 95.6 %
Sato (asymptotically optimal) 0.89 (0.14), conv. = 63.2 % 0.93 (0.10), conv. = 78.8 %
Sutton (recency-based) 0.91 (0.08), conv. = 88.9 % 0.91 (0.08), conv. = 96.2 %
vb. IEQL— or IEDP— 0.94 (0.11) 0.95 (0.10), conv. = 84.9 %
eb. IEQL— or IEDP— 0.95 (0.10), conv. = 80.5 % 0.95 (0.12), conv. = 75.1 %
wc. IEQL— or IEDP— 0.93 (0.12) 0.95 (0.05), conv. = 99.7 %
vb. IQL— or TDP— 0.93 (0.13) 0.96 (0.09)

eb. IQL— or IDP— 0.94 (0.12), conv. = 69.4 % 0.96 (0.11)

wc. IQL— or IDP— 0.93 (0.12) 0.98 (0.07), conv. = 94.8 %
vb. TEQL+ or TEDP+ 0.71 (0.05) 0.96 (0.09)

eb. IEQL+ or IEDP+ 0.71 (0.05) 0.97 (0.10), conv. = 82.5 %
wc. IEQL+ or IEDP+ 0.96 (0.08), conv. = 91.2 % 0.97 (0.07), conv. = 92.7 %
vb. IQL+ or IDP+ 0.72 (0.05) 0.92 (0.14)

eb. IQL+ or TDP+ 0.72 (0.05) 0.91 (0.16)

wc. IQL+ or IDP+ 0.95 (0.10), conv. = 78.9 % 0.98 (0.08), conv. = 91.6 %
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exploration over local. However, among the directed techniques tested (local and
global), our algorithms behave better than others.

Even if the results do not show a clear superiority of global exploration in this
completely connected environment, the ‘+’ algorithms do not perform worse than
the ¢->. This tends to show that, even if the back-propagation of exploration bonuses
does not always increase the performance of the algorithms, it does not decrease it.

The surprising result is the bad performance of variance- and error-based IQL+
and TEQL+. Because task 3 has a positive transition matrix and a full (as opposed
to sparse) reward matrix, the degeneration of exploration bonuses should not hap-
pen. Actually, variance- and error-based ‘—’ algorithms perform well. Further
experiments are required to explain why the ‘+’ algorithms fail on this task.

5.2.4. Discussion

Our experiments show the following classification of exploration techniques (by
increasing efficiency):

1. undirected exploration,
2. directed, local exploration,
3. directed, global exploration.

These results appear very clearly in the case of QL, especially, but not exclusively,
in environments that were designed to be discriminating. Results with ADP are
less significant, probably because the environments used are too small.

Among the different variants tested, worst-case algorithms are the simplest and
the most efficient. They represent a very good compromise between these two ob-
jectives. In particular one should remember worst-case IQL+ and IEQL+ which,
despite their low complexity, achieve the best performances of QL in all the envi-
ronments of our complete benchmark.

6. Conclusion

This paper makes several contribution to the problem of exploration of multi-state
environments. First, we proposed a unified notation for different solutions to nor-
mal bandit problems, and we stressed the importance of the notion of exploration
bonuses (section 3.1). Second, we highlighted several theoretical and practical limi-
tations to the approach that consists of using bandit problem theory to define local
measures of the uncertainty in multi-state environments (sections 3.2 and 3.5). Fi-
nally, we proposed efficient algorithms built on the basis of these results (section
4).
Qualitatively, the algorithms that we propose may be defended by the following
arguments:
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1. exploration bonuses are defined to evaluate the interest of the actions in regards
to exploration. They allow us to quantify the uncertainty in the same units as
the rewards, and to make explicit the reasons for the choice of a non-optimal
action;

2. the back-propagation of exploration bonuses allows an intelligent and complete
exploration of the environment, using only local measures of uncertainty;

3. the scaling of exploration bonuses is necessary to moderate the effect of the
back-propagation of bonuses; it allows a reasonable exploration;

4. the initialization of variables with a large positive constant allows exploration
to start from time 0, even if there is no model of the problem. This technique
is necessary in asynchronous algorithms to ensure correct behavior before the
environment has been completely visited.

Experiments showed that very good performance can be attained if these four
techniques are jointly applied. Further research is needed to determine the relative
role of each one in the origin of this success.

In the introduction, we said that most reinforcement learning algorithms may be
divided into two components, the first being responsible for the calculation and
the storage of the value function, and the second being the rule of action selection.
It is noteworthy that this distinction is no longer relevant in ‘4’ algorithms: the
variables N calculated by (44) and (45) represent, at the same time, the value
function and the rule of selection of the actions. Our work shows that introducing
considerations about uncertainty in the value function is an elegant and efficient
solution for the exploration of multi-state environments.
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Notes

1. The following results can be generalized to problems where the set of available actions depends
on the state.

2. A short discussion on this subject is present at the end of section 3.4.3.

3. We do not use the usual notation a for the confidence coefficient, because we already used this
symbol for QL’s learning-rate.

4. We prefer to develop a special notation by replacing rewards r by p, and discount factor « by
g, when bandit problems are concerned. This will prevent confusion in the following sections,
when we use bandit problem solutions in the framework of MDPs.
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5. Gittins provides tables for the quantities n(1 — 9)1/2119(07 n) and v4(0,1,n)/vg(0,n) — 1. This
is sufficient to calculate v4 (0,n) and vy (0,1,n).

6. This phenomenon causes the degeneration of undirected exploration that turns to random
walk, see section 4.2.3.

7. This drawback may be avoided in Barto et al.’s (1991, 1995) ARTDP algorithm.

8. To avoid this, we tried to suppress the V- or Q-values and use only the N-values, even for
feeding the sliding windows (N replaces V' in (26) and (32)); see Meuleau (1996).

9. Because variance- and error-based IDP+ and IEDP+ have to manage two sets of variables (cf.
4.3), they execute only one iteration of Gauss-Seidel DP with each set of variables after each
state transition.

10.Boundary effects due to the finite duration of the experiments introduce few differences between
these two policies. However, since their divergence occurs only during the last steps of the
experiment, its overall influence its negligible.
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